Delineation of a FOXA1/ERα/AGR2 regulatory loop that is dysregulated in endocrine therapy-resistant breast cancer.
نویسندگان
چکیده
UNLABELLED Tamoxifen, a selective estrogen receptor (ER) modulator (SERM), remains a frontline clinical therapy for patients with ERα-positive breast cancer. However, the relatively rapid development of resistance to this drug in the metastatic setting remains an impediment to a durable response. Although drug resistance likely arises by many different mechanisms, the consensus is that most of the implicated pathways facilitate the outgrowth of a subpopulation of cancer cells that can either recognize tamoxifen as an agonist or bypass the regulatory control of ERα. Notable in this regard is the observation here and in other studies that expression of anterior gradient homology 2 (AGR2), a known proto-oncogene and disulfide isomerase, was induced by both estrogen (17β-estradiol, E2) and 4-hydroxytamoxifen (4OHT) in breast cancer cells. The importance of AGR2 expression is highlighted here by the observation that (i) its knockdown inhibited the growth of both tamoxifen-sensitive and -resistant breast cancer cells and (ii) its increased expression enhanced the growth of ERα-positive tumors in vivo and increased the migratory capacity of breast cancer cells in vitro. Interestingly, as with most ERα target genes, the expression of AGR2 in all breast cancer cells examined requires the transcription factor FOXA1. However, in tamoxifen-resistant cells, the expression of AGR2 occurs in a constitutive manner, requiring FOXA1, but loses its dependence on ER. Taken together, these data define the importance of AGR2 in breast cancer cell growth and highlight a mechanism where changes in FOXA1 activity obviate the need for ER in the regulation of this gene. IMPLICATIONS These findings reveal the transcriptional interplay between FOXA1 and ERα in controlling AGR2 during the transition from therapy-sensitive to -resistant breast cancer and implicate AGR2 as a relevant therapeutic target.
منابع مشابه
Oncogenes and Tumor Suppressors Delineation of a FOXA1/ERa/AGR2 Regulatory Loop That Is Dysregulated in Endocrine Therapy–Resistant Breast Cancer
Tamoxifen, a selective estrogen receptor (ER) modulator (SERM), remains a frontline clinical therapy for patients with ERa-positive breast cancer. However, the relatively rapid development of resistance to this drug in the metastatic setting remains an impediment to a durable response. Although drug resistance likely arises by many different mechanisms, the consensus is that most of the implica...
متن کاملEstrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer
Estrogen receptors (ERs), including ERα and ERβ, mainly mediate the genotype effect of estrogen. ERα is highly expressed in most breast cancers. Endocrine therapy is the most effective and safety adjunctive therapy for ER positive breast cancers. RNPC1, an RNA binding protein (RBP), post-transcriptionally regulating gene expression, is emerging as a critical mechanism for gene regulation in mam...
متن کاملp21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells
Estrogen receptor alpha (ERα) is highly expressed in most breast cancers. Consequently, ERα modulators, such as tamoxifen, are successful in breast cancer treatment, although tamoxifen resistance is commonly observed. While tamoxifen resistance may be caused by altered ERα signaling, the molecular mechanisms regulating ERα signaling and tamoxifen resistance are not entirely clear. Here, we foun...
متن کاملDMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through notch hyper-activation
The acquisition of endocrine therapy resistance in estrogen receptor α (ERα) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. Th...
متن کاملAurora-A Mitotic Kinase Induces Endocrine Resistance through Down-Regulation of ERα Expression in Initially ERα+ Breast Cancer Cells
Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the 'cross-talk' between ERα and MAPK signaling pathways as a key oncogenic axis responsible for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 12 12 شماره
صفحات -
تاریخ انتشار 2014